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Abstract. Fasion procedure for the R-matrices with disorder parameter pt; and the power-series
expansion technique of de Vega have been used to construct a spin-1 chain with long-range
interaction. The energy eigenvalue and the equation for the momenta for the state containing
m-excitations are determined with the help of the algebraic Bethe ansatz.

1. Introduction

Studies of spin chain greater than 1/2 became a reality with the advent of the fusion technigue
for R-matrices [1]. Though Zamoldochikov and Fateev [2] made the initial attempt and
constructed the R-matrix for the spin-1 system by solving the Yang-Baxter equation, the
complete solution could not be obtained until the method of fusion was adopted. The explicit
construction of the Bethe ansatz was obtained by using the commutation rules dictated by
the 9 x 9 R-matrix and by using the elegant formalism of the fusion procedure {3].

In this paper we show how the fusion procedure can be combined with the methodology
suggested by de Vega [4] to construct a spin-1 chain with long-range interaction (that is
not restricted to the nearest neighbour). Due to the methodology of the fusion technigue
we have been able to set up the Algebraic Bethe ansatz for the mth excitation state. The
energy eigenvalue of such a state and the equation determining the m-eigenmomenta are
explicitly deduced. )

Our paper is organised as follows. In section 2, for completeness, we have re-derived the
Bethe ansatz results for the usnal xxz case which we will use in the subsequent sections. In
section 3 we construct the first and second fused R-matrices. In section 4 we show how the
long-range Hamiltonian involving spin-1 operators can be constructed. Finally in sections 5
and 6 we deduce the corresponding eigenvalues and the Bethe ansatz equations.

2. Formulation

To begin let us consider a Hejsenberg spin chain with nearest neighbour interaction (spin
of each atom at the lattice site is equal to 1/2) governed by the quantum R-matrix [5]

sin{@ -+ 1) 0 0 0
_ 0 sinhd sinhy 0
k@) = 0 sinhz sinhé 0 O
0 0 0 sinh(@ +#n)
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The basic observation of [4] is that, even if one introduces inhomogeneities i1, g, .. ., iy
at the lattice sites { = 1, 2, ..., N, the model remains integrable and the systems still possess
an infinite number of integrals of motion in involution.

In general, a monodromy operator T'(8, {}) is written as
N
770, (uh) = [ [ RGO + 1)
i=1

where Ry is defined over Vy ® V;, Vy being the quantum space, and o is used to denote
the purely spin-1/2 character of the R matrix. Also

o _{ A6, {uh B°G, {uh
776 uh) = (c"(e, W) DG, {u.})) :

The comresponding transfer matrix 17 (@, p) is
t7(0, {u}) = Tro T7(8, {u}).

The matrix element of T (8, {u]) will be denoted as T,z(@, {1£}). The above assertion itplies
that

[Tro 7@, {u]), Tro T(®, {uP}=0 3)

where T(9, ;1) denotes the monodromy operator for the irhomogeneous model and Try
denotes that the operation of taking the trace is to be performed over the quantum space.

The monodromy matrix for the inhomogeneous model reads in terms of site operators
[4] as

2

Tw@uh = D 2@+ p)D @+ pm) ... M0 + pyday-1b. @

1,82, 0ty =1

The operators t® (8 + uy)ar—1a; act on the 2D vertical space V. We have

_ { sinh(6 4+ 1) 0 _ .
(M = ( 0 sinhe) t(@)2 = o_sinhy 5
sinh@ 0 _ .
t(e)m = ( 0 Siﬂh(@ _[_ n)) t(9)21 =0 sitth ]

where

oo = 01 o = 00
T\ 0 A1 0}
Such a monodromy mairix also satisfies

R7(O — 00T (6. {khT7 @, {Lh =T° @, {(uhT° 6, {WhR°(E — )  (6)

with R given by (1).
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From the Yang—Baxter equation (6) we obtain

- o __ sinh(@; ~8+1n) wegy _ __ Sinh7 o oy
AT@)B° 6) = S P BT 60 ATO) — s B @A 6) )
- 5 _sinh(@—61+7) . o ran _ sinhn " -
DO 6) = = S BT D (6) = L B 6) D7 6) ®
" |
C'OB @) = B OICO) + TS IDT @A O - I OAE). )

We shall treat B° as the creation operaior and C7 as the destruction operator,
Let us start with a single particle state |21} = B(v1){0}s. It may be noted that the mth
particle state is given as

|2} = BT (v1)B? (v2) ... B (V) 10} ' (10)
and that C7(P) is the destruction operator, C7 (9)[0}, = 0. Now consider

(A%, (1)) + D7 (6, (w0 = () [ [ St — 0D | g [ SR 20 1)
f=1 i=1

sinh(y; — @) sinh(® — ;)
) 7 (11
where
A%(6, Qul = Q0
6, (D182} = ()| 2m) )
D70, {u])|Rm) = () |Qp).
o{u), (i) are given by
a0, (1)) = [ ] sinh(® + s + 1)
= (13)

86, () =] | sinh(6 + o).
k=1

In deriving these expressions we have utilised expressions (4) and (5) for T,5 and the fact
that '

N
(1
0. =]]® (0) : (14)
It is not difficult to deduce that the eigenvalue of such an excited state is given as
2 sinh{y; — 6 + 2 sinh(9 — v; +
gy =[Sm0ty [TERO U W50y a5

sinh(v; — 9) sinh{f — v;)

The eigenmomenta v; are given by the equations obtained by equating the residues at the
poles of E7(8) to zero. In this way one obtaing

n m

sinh(v; + pp +n) sinh(v; — v; — 1)
== . . 16
,L-I[ sinh(v; + gy} H sinh(v; — v; + 1) (16)

sl
I#]

Here we have actually-re-derived the basics of a spin-1/2 chain in a slightly different way;
we will be referring to these repeatedly in what follows.
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3. The fusion process

‘We now fuse two spin-1/2 quantom R” matrices to construct an intermediate R% matrix:
R0, {u}) = PLRO(0 — n/2)R° (0 + n/2) P} 17

where the suffix s denotes that half of the spin states are now actually spin-1 due to the
fusion procedure. The corresponding monodromy matrix is now

T {uh) = PEIY @ — n/2, {uDT @ + /2, (uh P (18)

where Ph is the projection operator.
The transfer matrix for the mixed o, situation is given by

1%, {u}) = Trl PETY @ — 1/2, (wDT (o + 0/2, () Py
=17(0 +1/2, {uDt” 0 + n/2, {u})
— Trpp[PR TV (6 + 1/2, (DT 6 + /2, {uh]. (a9
The last term is just the quantum determinant

i—-P
2

A@)=Tr [ T7 (@ — n/2, {uDT7 6 +n/2, {#})] (20)

where P is the permutation operator.
Explicitly, we have

A@) = AT +n/2, {u) D (6 — n/2,{u}) ~ B @ + /2, {LDC (6 — n/2,{u}). (2D

Eigenvalues and Eigenvectors of the mixed transfer matrix ¢ can be cbtained from the
crucial observation that t* and f” commute:

[0, {uh), 7@, {#D] =0 (22)

so that they do possess common eigenvectors. So using |{Qp,), found in the previous section,
we can at once obtain the eigenvalue of 1% as

Eq@) = EL(0 — n/2)EL(@ +1/2) —d(B)

I=1

i Sinb(v, — @ — 1/2) 17 sinh(@ — v — n/2)
= o(f + /238 —n/2).

We now perform the second fusion to obtain the full spin-1 chain. We denote the
corresponding monodromy matrix as T°:

T°@, {uh) = PST0 — /2, {uDT3*8 + n/2, (Lh P (24)
Taking the trace of both sides we obtain

£0, {u)) = TAPET™ (0 — /2, {eDT5" @ + n/2, {kH Pj]
= 170~ n/2, {uHt™ @ — n/2, {u]) — A@) . 2%
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where A(#) is again a quantum determinant given as

A(§) = q-det T (6 — 1/2) q-det T;*(@ + 1n/2)
=A@ —n/2)A0 + n/2). ' 26

From equation (19) we now obtain
@, ) =170 —n, (L7 @, (1) — A@ —n/2]° @, {uh” @ +n. {n) — A +1/2)]
= AE —n/2) A0 +1/2)

=170 — 1, {eht® @, (u)e” @, {uhe® @ +n, {uh

=170 —n, (W7 @, (D AE +n/2) — AB —n/2)t7 (@, {uht” @ +n, {w}).
27)

"Again, with the help of the Yang-Baxter equation we can prove that
(@, (D, 2@, {uh] =0 (28)

.50 that they also have commeon eigenvectors. This was the main component in the analysis
of [3]. So, if we operate with £°, as given in equation (27), on |Q,,} we obtain
EL(©) = Ep(6 —mERO)ER (O ER (6 + m — EL(6 — MEL(6)d(® +n/2)

—d@ —n/DE;(HELE +n). (29)
We have now deduced the general form of the eigenvalues of the mth excited state for a
spin-1 system by the technique of double fusion, without any reference to the specific form
of the Hamiltonjan,

In the following section we will first deduce the long-range interaction Hamiltonian and
then extract the comesponding eigenvalue from the general expression (29).

4. Long-range Hamiltonian

We start with the one-time fused form of the R matrix R%™(w):

a 0000 0 0
0 b 0do 0
w00 co0 a0
RY@ =10 40 c 00 (30)
00d05b 0
000000

with
alew) = sinh{e + %n) b{w) = sinh(w + n/2)
c{w) = sink{w — n/2) d(w) = /sink 7y sinh 25,
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This matrix acts on the tensor product of the vector space V, ® V,, that is a (2 x 3)-
dimensional space. We first note that R® can be written as

R%(w) = (tll 312) (1)

f21 i

where
t1 = flw, 15t + gle, M)ss + hiw, n)

tr = flw, )55 — gle, n)s3 + ko, 7) (32)
ty =ds- 1 = ds.;.

with 53, 54, 5— representing the spin-1 matrix operators of SU(2):

10 O 1 01¢0 0 -1 0
=(0 0 0) 51=§(1 0 1) § == (1 0 —1) (33)
0 0 -1 010 o0 1 0
where s+ = 51 £ is2 and the functions f, g, & are given as
go.m=1ia-0o . (3

flw.n)=31@a—-2b+c)
hlw,n) =

If we expand f, g, i around w = ¢o then we obtain

[ e

f — e 2g5inh2 /2

Ry
8= Ee"""”/ 2 sinh (35)

B —> le@tn/2
(=00 2 !

We will now utilise these to obtain the asymptotic form for the elements of T°. Since

2
T, ud= Y. D@+ @+ m) .. 1) @+ uy)  (36)

Y yeiastlN=]

using (30) we at once obtain

N
A%, {1}) =y @) [eXP [n Z s } + 28 4o "‘)]

. €1y
D™ (w, {u}) = y”cw)[cxp [ 7 Zss] '4)}
I
N -
B (w, (u}) X y¥ " (w)d YAzt
k= (38)

N
C (o, ) 2 yV @) ) e EL

k=1
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where
k=1 N
TF =exp [11 sg}si exp [ - Z s‘{‘
i=1 f=k+1] 39
k=1 N (39)
=k =exp [ -7 s§:|si exp [n Z S:‘;:I
i=l r=k+1
and
) - =l g k=1
Qi) = d?e?* E e~H~H exp [ +7 Zs;]s'; exp I: Fr Z sf{‘]
i<j<k<N i=1 m=j+1
N
x.siexp[:l:n 3 sé]
1=+t
_ _ (40)
d = /sinh nsinh 2y
y= Lowtn/2+i
1 &
=g m Ba=) s
k=1 i

Substituting these expressions in #*(w, {1}) we obtain

w, {uh) = y*" (w)[(ez””-‘ +e™ B L)+ %{(e” Q:()e™ fe e Q (u)+e'Q_e™
+eeT O (1) + 61 Q- (W™ + TR O (1))

N
a2y ehmes z‘_)]. (1)
k=1

Extracting the coefficient of y2¥~2 gives the Hamiltonian

Hyn—g = "{ Q4 ()e™ + Q-(M)e—"za + Q4 (1)e™1™}

+e ™M™ QL (1) + ™ Q (1) +e O _(u)}

N -
+d? )y kRt sl (42)
k=1

which is actually a long-range Hamiltonian coupling of the spin-1 operators s3, 54, s— at
different lattice sites. It was the simple observation of de Vega [4] that the expression of
the transfer matrix in the parameter y leads to various long-range Hamiltonians, We have
applied it in the case of the fused (doubly) ¢-mairix £*(w, ).
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5. Eigenvalues

The eigenvalues pertatning to this Hamiltonian ¢an be extracted from our general expression
given in equation (29), by the corresponding cxpans;on in the variable y.
If we set

x = 23 TENTES Y]

then after a simple calculation we obtain

& o o
Su) = x”e‘"”/z[l - Zem'"“*’ +- ]

4x? &
(43)
Substituting in equation (29) we obtain
- RZ _
_ 2 1 -3 (e}
E= {RlSl(e T+ 1) +T(e” +e ")ZK:G (et }
lrsiasem+ B om D
4 &
— (R3S1(1 + ™) + R3S (e¥ + 1)} (44)
where
Ry = eW2W=2m) 4 o=n/2(N~2m)
N m
S, = el/AN—2m) { YA _2sighy Y ) ]
=1 ) (45)
4 e~ /2N=2m) {e” Z e2@E—m) _ 2 ginh 7 Z eZ(etur) }
k=1 =1

which is the required eigenvalue corresponding to the long-range Hamiltonian (42).

0. Bethe ansatz equations

In the above analysis we stil do not know how the quasi-momenta »; are determined; the
eigenvalues and many other quantities are determined by them. The equations determining
v; can be obtained by demanding that the residue at the poles of the exact expression for
E@, {11}y will vanish. We go back to equations (29), (15} and (13) and evaluate the residue
at v = v;. The result of this calculation can be presented in a compact form if we define

= osinh(@ —u; — 1) sinh(8 — v; + 1)

A(6) = sinh(6 —v;—1) lI;l[ Sh (@ — o) e (#)+-sinh(@—v;+-1) H sinh(8 — v;)

i#f =3

5(6)

(46}
Q = E° (6 —nA©)@ +n/2) .
R=E%(0+n)A@)dE® —n/2) 7
P=E"6 -mA*G)E" (@ +n).
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The Bethe ansatz equation can now be written as

P G+R
Resg—y, [E*(8, = Resp- - - 48
o=y [E°0, D) P= [sinhz(t? —w)  sinh(@ — uj)] “8)
which, on simplification, leads to
l—N[ sinh(v; + pg + ) _ ﬁ sinh(v; — v; — 1) (49)

ko sinh(v; + pg) sish(v; — v; + 1)

£l
]

which is very similar to the case of the spin-1 open chain considered by Mezincescu and
Nepomachia with nearest neighbour interaction [3].

7. Conclusions

In our analysis we have shown how, with the help of the fusion procedure, one can construct
a long-range spin-I chain and selve it completely by using the commutativity of the transfer
matrix for the pure spin-1/2 case and that of the mixed (1/2 — 1) system, and also with the
transfer matrix of the spin-1 system. The long-range Hamiltonian has been written solely
in terms of spin-1 operators.
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